Document details

Mapas de mobilidade pessoal

Author(s): Conde, Ângelo cv logo 1

Date: 2012

Persistent ID: http://hdl.handle.net/1822/25839

Origin: RepositóriUM - Universidade do Minho


Description
Dissertação de mestrado em Engenharia e Gestão de Sistemas de Informação A computação móvel e ubíqua tem evoluído de forma significativa desde 1991, ano em que Weiser teve uma visão pioneira do que esta seria. O surgimento dos smartphones, o desenvolvimento de aplicações para esses dispositivos, novas formas de interação e sobretudo a inclusão de sensores com capacidade para recolher e capturar o contexto do utilizador, permitiu fornecer serviços centrados nas pessoas que melhorem a sua qualidade de vida. A análise de movimento é, atualmente, uma das atividades mais relevantes no contexto da computação ubíqua e na computação urbana. É uma disciplina bastante abrangente que recorre a vários tipos de sensores para recolha de dados, a tipos de dados de natureza diversa, a estratégias de recolha de dados participativas e/ou colaborativas, a um leque alargado de técnicas de análise desses dados, e a um conjunto de técnicas de visualização de dados espaçotemporais. Tirando partido da grande proliferação das redes Wi-Fi, no âmbito deste trabalho foi desenvolvido um algoritmo que, usando somente a identificação do AP com maior força de sinal, respetivos APs vizinhos e sem conhecimento prévio da topologia da rede, é capaz de identificar os locais relevantes no quotidiano do utilizador. Esses locais, e respetivas transições entre eles, permitem a construção dos Mapas de Mobilidade Pessoal que representam os hábitos de mobilidade do utilizador. Mobile and ubiquitous computing has evolved significantly since 1991, the year when Weiser had a pioneering vision of what would be. The emergence of new mobile devices, the development of applications for those devices, new forms of interaction and especially the inclusion of sensors with the capacity to collect and capture the context of the user, allowed to provide people-centric services which improve their quality of life. The movement analysis is currently one of the most relevant activities in the context of ubiquitous and urban computing. It is a broad discipline that uses many types of sensors for data collection, various data types of different nature, various strategies of participatory and/or collaborative data collection, a wide range of techniques for data analysis, and a set of visualization techniques for spatio-temporal data. As part of this work, and taking advantage of the great Wi-Fi networks proliferation, a new algorithm was developed, using only the identification of the AP with the highest signal strength, as well as the respective neighboring APs, and without prior knowledge of network topology, is able to identify the relevant places in the user’s everyday life. These places, and the displacements between them, allow the creation of Personal Mobility Maps which represent the mobility habits of the user.
Document Type Master Thesis
Language Portuguese
Advisor(s) Moreira, Adriano
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU