Document details

A coinductive approach to proof search

Author(s): Espírito Santo, José cv logo 1 ; Matthes, Ralph cv logo 2 ; Pinto, Luís F. cv logo 3

Date: 2013

Persistent ID: http://hdl.handle.net/1822/25226

Origin: RepositóriUM - Universidade do Minho

Subject(s): Proof search; Coinduction; Intuitionistic logic; Lambda-calculus


Description
We propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin’s LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of expressing alternatives for the description of the “solution spaces” (called Böhm forests), which are a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given formula (more generally: of a given sequent). As main result we obtain, for each given formula, the reduction of a coinductive definition of the solution space to a effective coinductive description in a finitary term calculus with a formal greatest fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas. For the general case, the naive extension would not even be true. We need to study “co-contraction” of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously in the semantic interpretation of fixed-point variables and not of the fixed-point operator.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU