Detalhes do Documento

Dynamics of a quasi-quadratic map

Autor(es): Azevedo, Assis cv logo 1 ; Carvalho, Maria cv logo 2 ; Machiavelo, Ant??nio cv logo 3

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/24729

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Discrete dynamical system; Ceiling function; Density; Covering system


Descrição
We consider the map $\cchi:\Q\to\Q$ given by $ \cchi(x)= x\ceil{x}$, where $\ceil{x}$ denotes the smallest integer greater than or equal to $x$, and study the problem of finding, for each rational, the smallest number of iterations by $\cchi$ that sends it into an integer. Given two natural numbers $M$ and $n$, we prove that the set of numerators of the irreducible fractions that have denominator$M$ and whose orbits by $\cchi$ reach an integer in exactly $n$ iterations is a disjoint union of congruence classes modulo $M^{n+1}$. Moreover, we establish a finite procedure to determine them. We also describe an efficient algorithm to decide if an orbit of a rational number bigger than one fails to hit an integer until a prescribed number of iterations have elapsed, and deduce that the probability that such an orbit enters $\Z$ is equal to one.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia