Detalhes do Documento

A stochastic Burgers equation from a class of microscopic interactions

Autor(es): Gonçalves, Patrícia cv logo 1 ; Jara, Milton cv logo 2 ; Sethuraman, Sunder cv logo 3

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/24264

Origem: RepositóriUM - Universidade do Minho

Assunto(s): KPZ equation; Burgers; Weakly asymmetric; Zero-range; Kinetically constrained; Equilibrium fluctuations; Speed-change; Fluctuations


Descrição
Documento submetido para revisão pelos pares. A publicar em Annals of Probability. ISSN 0091-1798 We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia