Detalhes do Documento

Forecasting seasonal time series with computational intelligence: on recent met...

Autor(es): Stepnicka, M. cv logo 1 ; Cortez, Paulo, 1971- cv logo 2 ; Peralta Donate, Juan cv logo 3 ; Stepnickova, Lenka cv logo 4

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/23527

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Time series; Computational intelligence; Neural networks; Support vector machine; Fuzzy rules; Genetic algorithm


Descrição
Accurate time series forecasting is a key issue to support individual and or- ganizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neu- ral networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on sea- sonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia