Detalhes do Documento

Evolutionary support vector machines for time series forecasting

Autor(es): Cortez, Paulo, 1971- cv logo 1 ; Peralta Donate, Juan cv logo 2

Data: 2012

Identificador Persistente: http://hdl.handle.net/1822/21407

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Evolutionary computation; Support vector machines; Time series; Forecasting


Descrição
Abstract. Time Series Forecasting (TSF) uses past patterns of an event in order to predict its future values and is a key tool to support decision making. In the last decades, Computational Intelligence (CI) techniques, such as Artificial Neural Networks (ANN) and more recently Support Vector Machines (SVM), have been proposed for TSF. The accuracy of the best CI model is affected by both the selection of input time lags and the model’s hyperparameters. In this work, we propose a novel Evolutionary SVM (ESVM) approach for TSF based on the Estimation Distribution Algorithm to search for the best number of inputs and SVM hyperparameters. Several experiments were held, using a set of six time series from distinct real-world domains. Overall, the proposed ESVM is competitive when compared with an Evolutionary ANN (EANN) and the popular ARIMA methodology, while consuming less computational effort when compared with EANN.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia