Detalhes do Documento

A hybrid genetic pattern search augmented Lagrangian method for constrained glo...

Autor(es): Costa, L. cv logo 1 ; Espírito Santo, I. A. C. P. cv logo 2 ; Fernandes, Edite Manuela da G. P. cv logo 3

Data: 2012

Identificador Persistente: http://hdl.handle.net/1822/20886

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Global Optimization; Augmented Lagrangian; Genetic algorithm; Pattern Search


Descrição
Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an $\varepsilon$-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia