Detalhes do Documento

On Separating Environmental and Speaker Adaptation

Autor(es): Lima, C. S. cv logo 1 ; Silva, Carlos A. cv logo 2 ; Tavares, Adriano cv logo 3 ; Oliveira, Jorge F. cv logo 4

Data: 2003

Identificador Persistente: http://hdl.handle.net/1822/2070

Origem: RepositóriUM - Universidade do Minho

Assunto(s): HMM Composition; Environmental Adaptation


Descrição
This paper presents a maximum likelihood (ML) approach, concerned to the background model estimation, in noisy acoustic non-stationary environments. The external noise source is characterised by a time constant convolutional and a time varying additive components. The HMM composition technique, provides a mechanism for integrating parametric models of acoustic background with the signal model, so that noise compensation is tightly coupled with the background model estimation. However, the existing continuous adaptation algorithms usually do not take advantage of this approach, being essentially based on the MLLR algorithm. Consequently, a model for environmental mismatch is not available and, even under constrained conditions a significant number of model parameters have to be updated. From a theoretical point of view only the noise model parameters need to be updated, being the clean speech ones unchanged by the environment. So, it can be advantageous to have a model for environmental mismatch. Additionally separating the additive and convolutional components means a separation between the environmental mismatch and speaker mismatch when the channel does not change for long periods. This approach was followed in the development of the algorithm proposed in this paper. One drawback sometimes attributed to the continuous adaptation approach is that recognition failures originate poor background estimates. This paper also proposes a MAP-like method to deal with this situation.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia