Document details

A single complete relational rule for coalgebraic refinement

Author(s): Rodrigues, César J. cv logo 1 ; Oliveira, José Nuno Fonseca cv logo 2 ; Barbosa, L. S. cv logo 3

Date: 2009

Persistent ID: http://hdl.handle.net/1822/20274

Origin: RepositóriUM - Universidade do Minho

Subject(s): Transition systems; Refinement


Description
A transition system can be presented either as a binary relation or as a coalgebra for the powerset functor, each representation being obtained from the other by transposition. More generally, a coalgebra for a functor F generalises transition systems in the sense that a shape for transitions is determined by F, typically encoding a signature of methods and observers. This paper explores such a duality to frame in purely relational terms coalgebraic refinement, showing that relational (data) refinement of transition relations, in its two variants, downward and upward (functional) simulations, is equivalent to coalgebraic refinement based on backward and forward morphisms, respectively. Going deeper, it is also shown that downward simulation provides a complete relational rule to prove coalgebraic refinement. With such a single rule the paper defines a pre-ordered calculus for refinement of coalgebras, with bisimilarity as the induced equivalence. The calculus is monotonic with respect to the main relational operators and arbitrary relator F, therefore providing a framework for structural reasoning about refinement.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU