Detalhes do Documento

Detection of small bowel tumors in endoscopic capsule images by modeling non-ga...

Autor(es): Barbosa, Daniel cv logo 1 ; Ramos, Jaime cv logo 2 ; Tavares, Adriano cv logo 3 ; Lima, C. S. cv logo 4

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/17771

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Non-gaussianity; Higher order moments; Small bowel tumor detection; Texture descriptors


Descrição
This paper presents an approach to the automatic detection of small bowel tumors by processing endoscopic capsule images. The most significant texture information is selected by using wavelet processing and captured in the image domain from an appropriate synthesized image. Co-occurrence matrices are used to derive texture descriptors by modeling second order statistics of color image levels. These descriptors are then modeled by using third and fourth order moments in order to cope with distributions that tend to become non-Gaussian especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data and shows that higher order moments can be effective in modeling capsule endoscopic images regarding tumor detection.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia