Detalhes do Documento

Nonlinear continuous global optimization by modified differential evolution

Autor(es): Azad, Md. Abul Kalam cv logo 1 ; Fernandes, Edite Manuela da G. P. cv logo 2 ; Rocha, Ana Maria A. C. cv logo 3

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/17117

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Nonlinear optimization; Simple bounds; Global optimization; Differential evolution


Descrição
The task of global optimization is to find a point where the objective function obtains its most extreme value. Differential evolution (DE) is a population-based heuristic approach that creates new candidate solutions by combining several points of the same population. The algorithm has three parameters: amplification factor of the differential variation, crossover control parameter and population size. It is reported that DE is sensitive to the choice of these parameters. To improve the quality of the solution, in this paper, we propose a modified differential evolution introducing self-adaptive parameters, modified mutation and the inversion operator. We test our method with a set of nonlinear continuous optimization problems with simple bounds.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia