Detalhes do Documento

The doubly negative matrix completion problem

Autor(es): Araújo, C. Mendes cv logo 1 ; Torregrosa, Juan R. cv logo 2 ; Urbano, Ana M. cv logo 3

Data: 2005

Identificador Persistente: http://hdl.handle.net/1822/1502

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Partial matrix; Matrix completion problems; DN-matrix; Undirected graphs


Descrição
An $n\times n$ matrix over the field of real numbers is a doubly negative matrix if it is symmetric, negative definite and entry-wise negative. In this paper, we are interested in the doubly negative matrix completion problem, that is when does a partial matrix have a doubly negative matrix completion. In general, we cannot guarantee the existence of such a completion. In this paper, we prove that every partial doubly negative matrix whose associated graph is a $p$-chordal graph $G$ has a doubly negative matrix completion if and only if $p=1$. Furthermore, the question of completability of partial doubly negative matrices whose associated graphs are cycles is addressed.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia