Document details

“In situ” corneal and contact lens thickness changes with high resolution OCT

Author(s): González-Méijome, José Manuel cv logo 1 ; Cerviño, Alejandro cv logo 2 ; Peixoto-de-Matos, S. C. cv logo 3 ; Madrid-Costa, David cv logo 4 ; Jorge, Jorge cv logo 5 ; Ferrer-Blasco, Teresa cv logo 6

Date: 2012

Persistent ID: http://hdl.handle.net/1822/13779

Origin: RepositóriUM - Universidade do Minho

Subject(s): Coherence tomography; Cornea


Description
Purpose: To show the utility of high resolution spectral domain optical coherence tomography (HR SOCT) for the in situ evaluation of epithelial, stromal and contact lens (CL) thickness changes under closed-eye conditions without lens removal. Settings: Clinical and Experimental Optometry Research Lab, University of Minho, Portugal. Methods: Eight young healthy patients wore a thick soft CL during 90 minutes under closed-eye conditions and measures of epithelial and stromal corneal thickness were obtained at regular intervals using a HR SOCT (Copernicus HR, Optopol Tech. SA, Poland). Results: Minimal changes in epithelial thickness were detected with a transient statistically significant increase in epithelial thickness in the fellow control eye 30 minutes after insertion (p=0.028). A significant and progressive increase in stromal thickness up to 8% after 90 minutes of lens wear was observed at a constant rate of 2.5% 50 every 30 minutes, being statistically significant in all observations (p<0.001). Fellow control eye also showed a significant increase in stromal thickness at a much lower rate of 0.5% every 30 minutes. Lens thickness decreased significantly by 2% after 90 minutes of lens wear under closed eye conditions (p<0.001). Individual analysis showed that all eyes displayed stromal swelling, while only half of them showed epithelial swelling. Conclusion: Increase in stromal thickness and a slight decrease in lens thickness were observed in response to a hypoxic stimulus under closed eye conditions. High resolution spectral domain HR SOCT is a powerful tool to investigate in vivo the physiological interactions between cornea and contact lenses.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU