Detalhes do Documento

A hyperbolic conservation law and particle systems

Autor(es): Gonçalves, Patrícia cv logo 1

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/11842

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Hyperbolic conservation law; Hydrodynamic limit; Asymmetric simple exclusion; Asymmetric zero-range; Equilibrium fluctuations


Descrição
In these notes we consider two particle systems: the totally asymmetric simple exclusion process and the totally asymmetric zero-range process. We introduce the notion of hydrodynamic limit and describe the partial differential equation that governs the evolution of the conserved quantity – the density of particles p(t,.). This equation is a hyperbolic conservation law of type ətp(p, u) + vF(p(t, u)) = 0, where the flux F is a concave function. Taking these systems evolving on the Euler time scale tN, a central limit theorem for the empirical measure holds and the temporal evolution of the limit density field is deterministic. By taking the system in a reference frame with constant velocity, the limit density field does not evolve in time. In order to have a non-trivial limit, time needs to be speeded up and for time scales smaller than tN 4=3, there is still no temporal evolution. As a consequence, the current across a characteristic vanishes up to this longer time scale.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia