Detalhes do Documento

A heuristic for the stability number of a graph based on convex quadratic progr...

Autor(es): Cavique, Luís cv logo 1 ; Luz, Carlos J. cv logo 2

Data: 2009

Identificador Persistente: http://hdl.handle.net/10400.2/1901

Origem: Repositório Aberto da Universidade Aberta

Assunto(s): Stability number ofa graph; Convex quadratic programming; Tabu search


Descrição
Recently, a characterization of the Lov´asz theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia