Detalhes do Documento

The strength of the biotic compartment to retain nitrogen additions prevents ni...

Autor(es): Dias, T. cv logo 1 ; Sheppard, L. cv logo 2 ; Martins-Loução, M. A. cv logo 3 ; Cruz, C. cv logo 4

Data: 2011

Identificador Persistente: http://hdl.handle.net/10451/3924

Origem: Repositório da Universidade de Lisboa


Descrição
Nitrogen (N) is one of the nutrients most limiting to ecosystem productivity. However, N availability is increasing globally, which may affect ecosystem functions and stability. To understand the role of each ecosystem compartment in the cycling of increased N, we studied the initial response of a nutrient-poor ecosystem, a Mediterranean maquis, to increased N. N availability (dose and forms) was modified by three N additions along the year (spring, summer and middle autumn/winter). Soil inorganic N pools (nitrate in particular) strongly reflected the N additions in autumn, almost matching the total N added along the three additions. Cistus ladanifer, the dominant plant species, responded to the increased N (cover and N concentration in leaves and litter), and given that leaf shedding occurs in the summer, the importance of this N pool returning to the soil through litter decomposition on the total soil inorganic N in autumn was investigated. Data suggest that living plants and litter have a crucial role in preventing N losses from Mediterranean maquis. This is the first integrated field study on how European Mediterranean ecosystems retain increased N of different forms and doses, however longer-term studies are needed to explore the generality of this study’s observations.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia