Detalhes do Documento

Sistemas de classificação musical com redes neuronais

Autor(es): Malheiro, Ricardo cv logo 1 ; Paiva, Rui Pedro cv logo 2 ; Mendes, António José cv logo 3 ; Mendes, Teresa cv logo 4 ; Cardoso, Amílcar cv logo 5

Data: 2004

Identificador Persistente: http://hdl.handle.net/10400.14/9102

Origem: Veritati - Repositório Institucional da Universidade Católica Portuguesa

Assunto(s): Classificação de música; Redes neuronais; Extracção de características; Análise de sinais musicais; Neural nets; Music information retrieval; Music classification; Feature extraction


Descrição
Como resultado da evolução e inovação tecnológicas, a indústria da distribuição electrónica de música tem tido um enorme crescimento. Desta forma, tarefas como a classificação automática de géneros musicais tornam-se um forte motivo para o incremento da investigação na área. O reconhecimento automático de géneros musicais envolve tarefas como a extracção de características das músicas e o desenvolvimento de classificadores que utilizem essas características. Neste estudo pretendeu-se, através de 3 problemas de classificação independentes, classificar peças de música clássica. Foi construído um protótipo para um sistema real de classificação, onde de um conjunto de músicas não catalogadas, foram automaticamente extraídos dez segmentos de seis segundos cada. Cada segmento musical foi classificado individualmente utilizando redes neuronais, tendo sido, para tal, extraídas 40 características por segmento. Cada música foi classificada no género mais representado pelos seus segmentos. As a result of recent technological innovations, there has been a tremendous growth in the Electronic Music Distribution industry. In this way, tasks such us automatic music genre classification address new and exciting research challenges. Automatic music genre recognition involves issues like feature extraction and development of classifiers using the obtained features. In this study we aim to classify classical music in subgenres, through three independent classification problems. Therefore, we extract 40 features for each one of the musical segments and we use neural nets as classifiers. Afterwards, due to the quality of the obtained results, a prototype system for automatic music classification of entire songs (not only segments) was built. We use 10 extracts for each song, uniformly distributed throughout the song. Each song is classified according to the most representative genre in all extracts.
Tipo de Documento Artigo
Idioma Português
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia