Document details

Hydrogen PEMFC stack performance analysis : a data-driven approach

Author(s): Lopes, Vitor V. cv logo 1 ; Novais, Augusto Q. cv logo 2 ; Rangel, C. M. cv logo 3

Date: 2009

Persistent ID: http://hdl.handle.net/10400.9/402

Origin: Repositório do LNEG

Subject(s): Fuel cells; Polarization curves; Data-driven techniques


Description
For low power fuel cells, it is paramount that management of reactants, water and heat, be realized in a passive fashion in order to minimize parasitic losses. Effective fuel, oxygen supply and water management for reliable performance are also greatly affected by cell geometry and materials. Fuel cells are complex systems to optimize on a mere experimental basis. As an aid to this goal, data-driven analysis techniques, requiring no mathematical model to be fixed a priori, are gaining a reputation in other fields of work, where a phenomenological modeling approach might be intractable. This work presents a characterization study of a 12W PEMFC series stack by means of a new data-driven technique, M-NMF. The stack was developed for low temperature operation, uses own designed flow field plates, integrated in a series configuration, and is operated for 12 combinations of hydrogen/air flowrate ratios, generating as many polarization curves. M-NMF is applied, in combination with an alternating least squares algorithm, to the analysis of the overvoltage data matrix derived from the original experimental polarization data. From this analysis, it is possible to group and differentiate data according to similar overvoltage patterns and gain insight into their relative contribution to fuel cell performance immunization.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU