Detalhes do Documento

Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis...

Autor(es): Ferreira, Ana F. cv logo 1 ; Marques, Ana C. cv logo 2 ; Batista, Ana Paula cv logo 3 ; Marques, Paula Alexandra cv logo 4 ; Gouveia, L. cv logo 5 ; Silva, Carla M. cv logo 6

Data: 2012

Identificador Persistente: http://hdl.handle.net/10400.9/1664

Origem: Repositório do LNEG

Assunto(s): Cyanobacteria; Biohydrogen; Photoautotrophic production; Energy balance; CO2 emissions


Descrição
This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to an industrial scale, but to highlight the processes that need further optimization. The experiments showed that the production of hydrogen from cyanobacteria Anabaena sp. is technically viable. The hydrogen yield for this case was 0.0114 kgH2/kgbiomass which had a rough energy consumption of 1538 MJ/MJH2 and produced 114640 gCO2/MJH2. The use of phototrophic residual cyanobacteria as a substrate in a dark-fermentation process increased the hydrogen yield by 8.1% but consumed 12.0% more of energy and produced 12.1% more of CO2 showing that although the process increased the overall efficiency of hydrogen production it was not a viable energy and CO2 emission solution. To make cyanobacteria-based biofuel production energy and environmentally relevant, efforts should be made to improve the hydrogen yield to values which are more competitive with glucose yields (0.1 kgH2/kgbiomass). This could be achieved through the use of electricity with at least 80% of renewables and eliminating the unessential processes (e.g.pre-concentration centrifugation).
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia