Document details

Modelling, control and Pontryagin Maximum Principle for a two-body wave energy ...

Author(s): Justino, Paulo Alexandre cv logo 1 ; Cândido, J. cv logo 2

Date: 2011

Persistent ID: http://hdl.handle.net/10400.9/1234

Origin: Repositório do LNEG

Subject(s): stochastic modelling; time domain modelling; Pontryagin Maximum Principle; two-body device


Description
Frequency domain analysis is applied to a wave energy device composed by two coaxial axisymmetric bodies. For each frequency optimal damping coefficient values which maximize absorbed power are obtained. Several displacement amplitude restriction scenarios are considered. A stochastic model to describe the device’s behaviour in irregular waves is developed. Optimal mechanical damping and spring coefficients are computed. Considering different sea state conditions, probability density functions are defined for relevant parameters and time averaged absorbed power values are obtained.A time domain model is also developed for the device. A non-linear power take-off mechanism configuration, consisting in a hydraulic circuit with low-pressure and high-pressure gas accumulators, is devised. Time averaged absorbed power is maximized in terms of characteristic mechanism parameter. A sub-optimal method of phase control by latching is applied to the device in order to improve its performance. Analytical development of Pontryagin Maximum Principle is used to establish an algorithm for device’s control.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU