Detalhes do Documento

Implementation of a stand-alone photovoltaic lighting system with MPPT battery ...

Autor(es): Vieira, José António Barros cv logo 1 ; Mota, Alexandre Manuel cv logo 2

Data: 2010

Identificador Persistente: http://hdl.handle.net/10400.11/1007

Origem: Repositório Científico do Instituto Politécnico de Castelo Branco

Assunto(s): Photo Voltaic Panel; MPPT; Renewable energy; Power LED


Descrição
"Copyright © [2010] IEEE. Reprinted from IEEE International Conference on Control Applications, 2010. ISBN: 978-1-4244-5362-7. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.” This paper presents a efficient stand-alone battery photovoltaic (PV) lighting system which can provide functional illumination based on power light-emitting diodes (PLEDs). PLED with specific features of small size, long life and high-brightness light will be choices of future light sources. The PLEDs are feed using a lead acid battery that is charged with a PV panel. This paper presents an interface board with a ATMEL ATTINY861V microcontroller, a single-ended primary inductance converter (SEPIC) and input and output voltage and current measurements. The microcontroller runs the perturbation and observation (P&O) maximum power point tracker (MPPT) algorithm used in battery charging process. This algorithm makes the system more efficient. In order to control the PLEDs current, an equal interface board is used running now the proportional integral (PI) current PLED control algorithm adjusting the wanted level of light in the PLEDs array. The two identical interfaces boards based in the economic microprocessor achieved very good results in battery charging and discharge supervision improving the efficiency a life-time of the lead acid batteries (first board) and presents good current control results in the PLEDs array (second equal board) providing a constant PLEDs light even in voltage battery variations or discharges. The stand alone lighting system monitors the surround area and if it feels any movement it changes the level of light of PLEDs from signal light to illumination light. After a pre-defined time it comes back to signal light, saving energy.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia