Detalhes do Documento

Folding and rescue of a cystic fibrosis transmembrane conductance regulator tra...

Autor(es): Da Paula, Ana Carina cv logo 1 ; Sousa, Marisa cv logo 2 ; Xu, Zhe cv logo 3 ; Dawson, Elizabeth S. cv logo 4 ; Boyd, A. Christopher cv logo 5 ; Sheppard, David N. cv logo 6 ; Amaral, Margarida D. cv logo 7

Data: 2010

Identificador Persistente: http://hdl.handle.net/10400.18/157

Origem: Repositório Científico do Instituto Nacional de Saúde

Assunto(s): Doenças Genéticas


Descrição
Impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel causes cystic fibrosis, a fatal genetic disease. Here, to gain insight into CFTR structure and function, we exploited interspecies differences between CFTR homologues using human (h)-murine (m) CFTR chimeras containing murine nucleotide-binding domains (NBDs) or regulatory domain on an hCFTR backbone. Among 15 hmCFTR chimeras analyzed, all but two were correctly processed, one containing part of mNBD1 and another containing part of mNBD2. Based on physicochemical distance analysis of divergent residues between human and murine CFTR in the two misprocessed hmCFTR chimeras, we generated point mutations for analysis of respective CFTR processing and functional properties. We identified one amino acid substitution (K584E-CFTR) that disrupts CFTR processing in NBD1. No single mutation was identified in NBD2 that disrupts protein processing. However, a number of NBD2 mutants altered channel function. Analysis of structural models of CFTR identified that although Lys584 interacts with residue Leu581 in human CFTR Glu584 interacts with Phe581 in mouse CFTR. Introduction of the murine residue (Phe581) in cis with K584E in human CFTR rescued the processing and trafficking defects of K584E-CFTR. Our data demonstrate that human-murine CFTR chimeras may be used to validate structural models of full-length CFTR. We also conclude that hmCFTR chimeras are a valuable tool to elucidate interactions between different domains of CFTR.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia