Detalhes do Documento

A Path- and Label-cost Propagation Approach to speedup the Training of the Opti...

Autor(es): A. S. Iwashita cv logo 1 ; J. P. Papa cv logo 2 ; A. N. Souza cv logo 3 ; A. X. Falcão cv logo 4 ; R. Lotufo cv logo 5 ; V. M. Oliveira cv logo 6 ; Victor Hugo C. de Albuquerque cv logo 7 ; João Manuel R. S. Tavares cv logo 8

Data: 2014

Identificador Persistente: http://hdl.handle.net/10216/70937

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Tecnológicas


Descrição
In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of "big data" classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an archictecture-independent optimization approach for the Optimum-Path Forest (OPF) classifier, that is designed using a theoretical formulation that relates the Minimum Spanning Tree with the Minimum Spanning Forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia