Detalhes do Documento

Thermal Aging Effects on the microstructure of Nb-bearing nickel based superall...

Autor(es): Victor Hugo C. de Albuquerque cv logo 1 ; Cleiton Carvalho Silva cv logo 2 ; Paulo G. Normando cv logo 3 ; Elineudo P. Moura cv logo 4 ; João Manuel R. S. Tavares cv logo 5

Data: 2012

Identificador Persistente: http://hdl.handle.net/10216/69702

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Tecnológicas


Descrição
Secondary phases such as Laves and carbides are formed during the final stages of solidification of the nickel based superalloy Inconel 625 coatings deposited during the gas tungsten arc welding (GTAW) cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the ´´ and  phases. The aim of this work was to evaluate the different phases formed during thermal aging of the as-welded material through ultrasound inspection, as well as the influence of background echo and backscattered ultrasound signals on the computational classification of the microstructures involved. The experimental conditions employed an aging temperature of 650 oC for 10, 100 and 200 h. The ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz and then processed to determine the ultrasound velocity and attenuation, as well as to study the background echo and backscattered signals produced by wave propagation. Both signal types were used to study the effectiveness and speed for classifying the secondary phases, using detrended fluctuation analysis and the Hurst method in the signal pre-processing and the Karhunen-Loeve Transform in the classification of the microstructures. The ultrasound signals and the signal processing tools used were considered sufficiently sensitive, fast and accurate in the detection and classification of the microstructures in the as-welded and aged Inconel 625 alloy using this nondestructive technique.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia