Detalhes do Documento

Inductive Logic Programming for Data Mining in Economics

Autor(es): Alexessander Alves cv logo 1 ; Rui Camacho cv logo 2 ; Eugénio Oliveira cv logo 3

Data: 2004

Identificador Persistente: http://hdl.handle.net/10216/67445

Origem: Repositório Aberto da Universidade do Porto


Descrição
This paper addresses the problem of data mining in Inductive Logic Programming (ILP) motivated by its application in the domain of economics. ILP systems have been largely applied to data mining classification tasks with a considerable success. The use of ILP systems in regression tasks has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the application of ILP to discovery of functional relationships of numeric nature. This paper proposes improvements in numerical reasoning capabilities of ILP systems for dealing with regression tasks. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium inspired in the PAC learning framework. We have found these extensions essential to improve on results over machine learning and statistical-based algorithms used in the empirical evaluation study.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia