Detalhes do Documento

Discovery of functional relationships in multi-relational data using inductive ...

Autor(es): Alexessander Alves cv logo 1 ; Rui Camacho cv logo 2 ; Eugénio Oliveira cv logo 3

Data: 2004

Identificador Persistente: http://hdl.handle.net/10216/67386

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Físicas; Ciência de computadores; Programação


Descrição
ILP systems have been largely applied to data mining classification tasks with a considerable success. The use of ILP systems in regression tasks has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the application of ILP to discovery of functional relationships of numeric nature. This paper proposes improvements in numerical reasoning capabilities of ILP systems for dealing with regression tasks. It proposes the use of statistical-based techniques like model validation and model selection to improve noise handling and it introduces a search stopping criterium based on the PAC method to evaluate learning performance. We have found these extensions essential to improve on results over machine learning and statistical-based algorithms used in the empirical evaluation study.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia