Detalhes do Documento

Time Dependent Clustering of Time Series

Autor(es): Joaquim Costa cv logo 1 ; Isabel Maria Silva cv logo 2 ; Eduarda Silva cv logo 3

Data: 2007

Identificador Persistente: http://hdl.handle.net/10216/66160

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Físicas; Matemática; Estatística


Descrição
In this work we consider the problem of clustering time series. Contrary to other works on this topic, our main concern is to let the most important observations, for instance the most recent, have a larger weight on the analysis. This is done by defining similarities measures between two time series, based on Pearson's correlation coefficient, which uses the notion of weighted mean and weighted covariance, where the weights increase monotonically with the time. We use these measures, which are metrics between time series, as a similarity or dissimilarity index between the $n$ time series to be clustered. We apply a very well known partitional method, the K-means, with some adaptations to make it able to choose the number of clusters.
Tipo de Documento Documento de conferência
Idioma Português
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia