Document details

Precipitates Segmentation from Scanning Electron Microscope Images through Mach...

Author(s): João P. Papa cv logo 1 ; Clayton R. Pereira cv logo 2 ; Victor H.C. de Albuquerque cv logo 3 ; Cleiton C. Silva cv logo 4 ; Alexandre X. Falcão cv logo 5 ; João Manuel R. S.Tavares cv logo 6

Date: 2011

Persistent ID: http://hdl.handle.net/10216/56015

Origin: Repositório Aberto da Universidade do Porto

Subject(s): Ciências tecnológicas


Description
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis.
Document Type Part of book or chapter of book
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU