Detalhes do Documento

Degradation and Viscoelastic Properties of PLA-PCL, PGA-PCL, PDO and PGA Fibres

Autor(es): A. C. Vieira cv logo 1 ; J. C. Vieira cv logo 2 ; R. M. Guedes cv logo 3 ; A. T. Marques cv logo 4

Data: 2010

Identificador Persistente: http://hdl.handle.net/10216/55290

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Tecnológicas; Engenharia; Engenharia de materiais


Descrição
Aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polydioxone (PDO) and others, have been commonly used in biodegradable products. Hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which, in most cases, are ultimately assimilated in human body or in a composting environment. However, each of these has some shortcomings, in terms of mechanical properties and degradation time, which restrict its applications. The combination of these materials, by copolymerization or blending, enables a range of mechanical properties and degradation rates. These are extremely promising approaches which can improve or tune the original properties of the polymers. A composite solution of several materials with different degradation rates also enables tuning the rate of degradation of a device and the mechanical properties. After immersion of an aliphatic polyester device, diffusion occurs very rapidly compared to hydrolysis. Therefore, it is usually considered that hydrolysis of ester bonds starts homogeneously and has traditionally been modelled according to a first order kinetics. In this experimental study, fibres of PLA-PCL, PGAPCL, PDO and PGA, with two different dimensions, were characterized in terms of their degradation rate under three different environments (water, NaCl and PBS) at constant temperature (37°C). Weights and mechanical properties were measured after six different degradation stages. Stages durations were different depending on materials, according to the predicted degradation times. As other thermoplastics, they are viscoelastic materials. In this experimental study mechanical properties of fibres were compared at different strain rates.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia