Detalhes do Documento

Comparison between Kalman and unscented Kalman filters in tracking applications...

Autor(es): Raquel Ramos Pinho cv logo 1 ; João Manuel Ribeiro da Silva Tavares cv logo 2

Data: 2009

Identificador Persistente: http://hdl.handle.net/10216/43605

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências tecnológicas; Engenharia; Engenharia mecânica


Descrição
In this paper, the problem of tracking feature points along image sequences is addressed. The establishment of correspondences between points and their tracking along image sequences is a complex problem in Computational Vision; especially, when intricate motions, erroneously detections or cases of occlusion or appearance/disappearing of features are involved. To overcome some of those difficulties, a statistical ap-proach is frequently used in a multi-object data association and state estimation framework. Additionally, the correspondence between each measurement and predicted feature can be performed by minimizing the overall Mahalanobis distance. Under these circumstances, the estimation of the system can be accomplished using different stochastic filters. Hereby, a comparison is made between the results obtained, with the described framework, either by the Kalman Filter or the Unscented Kalman Filter, in the tracking of linear and non-linear motions of feature points along image sequences.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia