Detalhes do Documento

Entropy diversity in multi-objective particle swarm optimization

Autor(es): Pires, E. J. Solteiro cv logo 1 ; Machado, J. A. Tenreiro cv logo 2 ; Oliveira, P. B. Moura cv logo 3

Data: 2013

Identificador Persistente: http://hdl.handle.net/10400.22/3186

Origem: Repositório Científico do Instituto Politécnico do Porto

Assunto(s): Multi-objective particle swarm optimization; Shannon entropy; Diversity


Descrição
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia