Detalhes do Documento

Hybrid fuzzy Monte Carlo and logic programming model for distribution network r...

Autor(es): Vale, Zita cv logo 1 ; Canizes, Bruno cv logo 2 ; Soares, João cv logo 3 ; Oliveira, Pedro cv logo 4 ; Sousa, Tiago cv logo 5 ; Silva, Marco cv logo 6 ; Soeiro, Alexandre cv logo 7 ; Khodr, H. M. cv logo 8

Data: 2011

Identificador Persistente: http://hdl.handle.net/10400.22/1418

Origem: Repositório Científico do Instituto Politécnico do Porto

Assunto(s): Fuzzy Monte Carlo; Logic programming; Distribution network


Descrição
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia