Document details

Supraconvergence and Supercloseness of a Scheme for Elliptic Equations on Nonun...

Author(s): Ferreira, J. A. cv logo 1 ; Grigorieff, R. D. cv logo 2

Date: 2006

Persistent ID: http://hdl.handle.net/10316/8984

Origin: Estudo Geral - Universidade de Coimbra


Description
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s? [1,2] order O(hs)-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H1+s(O). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h3/2-e) with e > 0 if u? H3(O). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s? , the given error estimates are strictly local. http://www.informaworld.com/10.1080/01630560600796485
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU