Document details

Alginate microparticles as novel carrier for oral insulin delivery

Author(s): Reis, Catarina Pinto cv logo 1 ; Ribeiro, António J. cv logo 2 ; Neufeld, Ronald J. cv logo 3 ; Veiga, Francisco cv logo 4

Date: 2007

Persistent ID: http://hdl.handle.net/10316/8357

Origin: Estudo Geral - Universidade de Coimbra


Description
Alginate microparticles produced by emulsification/internal gelation were investigated as a promising carrier for insulin delivery. The procedure involves the dispersion of alginate solution containing insulin protein, into a water immiscible phase. Gelation is triggered in situ by instantaneous release of ionic calcium from carbonate complex via gentle pH adjustment. Particle size is controlled through the emulsification parameters, yielding insulin-loaded microparticles. Particle recovery was compared using several washing protocols. Recovery strategies are proposed and the influence on particle mean size, morphology, recovery yield (RY), encapsulation efficiency, insulin release profile, and structural integrity of released insulin were evaluated. Spherical micron-sized particles loaded with insulin were produced. The recovery process was optimized, improving yield, and ensuring removal of residual oil from the particle surface. The optimum recovery strategy consisted in successive washing with a mixture of acetone/hexane/isopropanol coupled with centrifugation. This strategy led to small spherical particles with an encapsulation efficiency of 80% and a RY around 70%. In vitro release studies showed that alginate itself was not able to suppress insulin release in acidic media; however, this strategy preserves the secondary structure of insulin. Particles had a mean size lower than the critical diameter necessary to be orally absorbed through the intestinal mucosa followed by their passage to systemic circulation and thus can be considered as a promising technology for insulin delivery. Biotechnol. Bioeng. 2007;96:977-989. © 2006 Wiley Periodicals, Inc. http://dx.doi.org/10.1002/bit.21164
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU