Detalhes do Documento

On countable choice and sequential spaces

Autor(es): Gutierres, Gonçalo cv logo 1

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/8212

Origem: Estudo Geral - Universidade de Coimbra


Descrição
Under the axiom of choice, every first countable space is a Fréchet-Urysohn space. Although, in its absence even R may fail to be a sequential space.Our goal in this paper is to discuss under which set-theoretic conditions some topological classes, such as the first countable spaces, the metric spaces, or the subspaces of R, are classes of Fréchet-Urysohn or sequential spaces.In this context, it is seen that there are metric spaces which are not sequential spaces. This fact raises the question of knowing if the completion of a metric space exists and it is unique. The answer depends on the definition of completion.Among other results it is shown that: every first countable space is a sequential space if and only if the axiom of countable choice holds, the sequential closure is idempotent in R if and only if the axiom of countable choice holds for families of subsets of R, and every metric space has a unique -completion. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) http://dx.doi.org/10.1002/malq.200710018
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia