Document details

Computational experiments with a lazy version of a  K  quickest simple path ran...

Author(s): Pascoal, M. cv logo 1 ; Captivo, M. cv logo 2 ; Clímaco, J. cv logo 3

Date: 2007

Persistent ID: http://hdl.handle.net/10316/7718

Origin: Estudo Geral - Universidade de Coimbra


Description
Abstract The quickest path problem is related to the classical shortest path problem, but its objective function concerns the transmission time of a given amount of data throughout a path, which involves both cost and capacity. The K-quickest simple paths problem generalises the latter, by looking for a given number K of simple paths in non-decreasing order of transmission time. Two categories of algorithms are known for ranking simple paths according to the transmission time. One is the adaptation of deviation algorithms for ranking shortest simple paths (Pascoal et al. in Comput. Oper. Res. 32(3):509–520, 2005; Rosen et al. in Comput. Oper. Res. 18(6):571–584, 1991), and another is based on ranking shortest simple paths in a sequence of networks with fixed capacity lower bounds (Chen in Inf. Process. Lett. 50:89–92, 1994), and afterwards selecting the K quickest ones. After reviewing the quickest path and the K-quickest simple paths problems we describe a recent algorithm for ranking quickest simple paths (Pascoal et al. in Ann. Oper. Res. 147(1):5–21, 2006). This is a lazy version of Chen’s algorithm, able to interchange the calculation of new simple paths and the output of each k-quickest simple path. Finally, the described algorithm is computationally compared to its former version, as well as to deviation algorithms. http://dx.doi.org/10.1007/s11750-007-0033-0
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU