Document details

On the corners of certain determinantal ranges

Author(s): Kovačec, Alexander cv logo 1 ; Bebiano, Natália cv logo 2 ; Providência, João da cv logo 3

Date: 2007

Persistent ID: http://hdl.handle.net/10316/4598

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Determinantal range; Hadamard product; Power series; Corners; Oliveira Marcus Conjecture


Description
Let A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)=det(AoQ):Q[set membership, variant]SO(n), where o denotes the Hadamard product of matrices. For a permutation [sigma] on 1,...,n, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology. http://www.sciencedirect.com/science/article/B6V0R-4NJG44V-3/1/29cc71d6352bcfea422c3dc7beebcbce
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU