Detalhes do Documento

Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green ...

Autor(es): Peixoto, Franciso P. cv logo 1 ; Gomes-Laranjo, José cv logo 2 ; Vicente, Joaquim A. cv logo 3 ; Madeira, Victor M.C. cv logo 4

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/3909

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Dicamba; Herbicide; Oxidative stress; Paraquat


Descrição
The effects of the herbicides 1,1'-dimethyl-4,4'-bipyridylium dichloride (paraquat), 3,6-dichloro-2-metoxybenzoic acid (dicamba) and 2,4-dichlorophenoxyacetic acid (2,4-D) on cell growth of non-green potato tuber calli are described. We attempted to relate the effects with toxicity, in particular the enzymes committed to the cellular antioxidant system. Cell cultures were exposed to the herbicides for a period of 4 weeks. Cellular integrity on the basis of fluorescein release was strongly affected by 2,4-D, followed by dicamba, and was not affected by paraquat. However, the three herbicides decreased the energy charge, with paraquat and 2,4-D being very efficient. Paraquat induced catalase (CAT) activity at low concentrations (1 [mu]M), whereas at higher concentrations, inhibition was observed. Dicamba and 2,4-D stimulated CAT as a function of concentration. Superoxide dismutase (SOD) activity was strongly stimulated by paraquat, whereas dicamba and 2,4-D were efficient only at higher concentrations. Glutathione reductase (GR) activity was induced by all the herbicides, suggesting that glutathione and glutathione-dependent enzymes are putatively involved in the detoxification of these herbicides. Paraquat slightly inhibited glutathione S-transferase (GST), whereas 2,4-D and dicamba promoted significant activation. These results indicate that the detoxifying mechanisms for 2,4-D and dicamba may be different from the mechanisms of paraquat detoxification. However, the main cause of cell death induced by paraquat and 2,4-D is putatively related with the cell energy charge decrease. http://www.sciencedirect.com/science/article/B7GJ7-4SBRTGG-2/1/57bc6e71553b233694cdc5be53c9bf61
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia