Detalhes do Documento

On the well-posedness of a two-phase minimization problem

Autor(es): Urbano, José Miguel cv logo 1 ; Vorotnikov, Dmitry cv logo 2

Data: 2010

Identificador Persistente: http://hdl.handle.net/10316/13715

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): In finity Laplacian; Viscosity solutions; Geometric properties of Sobolev functions


Descrição
We prove a series of results concerning the emptiness and non-emptiness of a certain set of Sobolev functions related to the well-posedness of a two-phase minimization problem, involving both the p(x)-norm and the in nity norm. The results, although interesting in their own right, hold the promise of a wider applicability since they can be relevant in the context of other problems where minimization of the p-energy in a part of the domain is coupled with the more local minimization of the L1-norm on another region
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia