Document details

Rings of real functions in Pointfree Topology

Author(s): Gutiérrez García, Javier cv logo 1 ; Picado, Jorge cv logo 2

Date: 2010

Persistent ID: http://hdl.handle.net/10316/13708

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Frame; Locale; Sublocale; Frame of reals; Scale; Frame real function; Continuous real function; Lower semicontinuous; Upper semicontinuous; Lattice-ordered ring; Ring of continuous functions in pointfree topology; Strict insertion


Description
This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent functions are characterized and the results of [10] about strict insertion of functions are signi cantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived. The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the -dissolution of the frame is continuous
Document Type Preprint
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU