Detalhes do Documento

Bilinear biorthogonal expansions and the spectrum of an integral operator

Autor(es): Abreu, Luís Daniel cv logo 1 ; Ciaurri, Óscar cv logo 2 ; Varona, Juan Luis cv logo 3

Data: 2009

Identificador Persistente: http://hdl.handle.net/10316/13647

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Bilinear expansion; Biorthogonal expansion; Plane wave expansion; Sampling theorem; Fourier-Neumann expansion; Dunkl transform; Special functions; Q-special functions


Descrição
We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier- Neumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we derive sampling and Fourier-Neumann type expansions and an explicit closed formula for the spectrum of a right inverse of the Dunkl operator. This is done by stating the problem in such a way it is possible to use the technique due to Ismail and Zhang. Moreover, we provide a q-analogue of the Fourier-Neumann expansions in q-Bessel functions of the third type. In particular, we obtain a q-linear analogue of Gegenbauer’s expansion of the plane wave by using q-Gegenbauer polynomials defined in terms of little q-Jacobi polynomials.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia