Detalhes do Documento

On computing real logarithms for matrices in the Lie group of special Euclidean...

Autor(es): Cardoso, J. R. cv logo 1 ; Leite, F. Silva cv logo 2

Data: 1999

Identificador Persistente: http://hdl.handle.net/10316/11563

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Lie group of Euclidean motions in IRn; Matrix logarithms; Matrix exponentials; Padé approximants method


Descrição
We show that the diagonal Pade approximants methods, both for computing the principal logarithm of matrices belonging to the Lie groupSE (n, IR) of special Euclidean motions in IRn and to compute the matrix exponential of elements in the corresponding Lie algebra se(n, IR), are structure preserving. Also, for the particular cases when n == 2,3 we present an alternative closed form to compute the principal logarithm. These low dimensional Lie groups play an important role in the kinematic motion of many mechanical systems and, for that reason, the results presented here have immediate applications in robotics
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia