Document details

On computing real logarithms for matrices in the Lie group of special Euclidean...

Author(s): Cardoso, J. R. cv logo 1 ; Leite, F. Silva cv logo 2

Date: 1999

Persistent ID: http://hdl.handle.net/10316/11563

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Lie group of Euclidean motions in IRn; Matrix logarithms; Matrix exponentials; Padé approximants method


Description
We show that the diagonal Pade approximants methods, both for computing the principal logarithm of matrices belonging to the Lie groupSE (n, IR) of special Euclidean motions in IRn and to compute the matrix exponential of elements in the corresponding Lie algebra se(n, IR), are structure preserving. Also, for the particular cases when n == 2,3 we present an alternative closed form to compute the principal logarithm. These low dimensional Lie groups play an important role in the kinematic motion of many mechanical systems and, for that reason, the results presented here have immediate applications in robotics
Document Type Preprint
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU