Detalhes do Documento

Electoral cells of largest remainders method

Autor(es): Gouveia, João cv logo 1 ; Sá, E. Marques de cv logo 2

Data: 2003

Identificador Persistente: http://hdl.handle.net/10316/11437

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Polytopes; Convexity; Faces; Tilings


Descrição
In an election process, p parties compete for S seats in a parliament. After votes are cast, the electoral result may be thought of as an element x in Rp. Given x, the so-called largest remainders method determines the number ai of seats party i gets in the parliament. The electoral cell determined by (a1,...,ap) is the closure of the set of all results x that determine ai seats for party i, 1<= i<= p. The electoral cells are convex polytopes and tile a hyperplane of Rp. In this paper we give a description of the electoral cells. For a single cell we identify and classify the cell's faces, completely describe its face lattice, and determine its group of automorphisms. It turns out that each face of dimension d arises from a d-unit-cube by a co pression along a diagonal.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia