Detalhes do Documento

The Hankel Pencil Conjecture

Autor(es): Kovačec, Alexander cv logo 1 ; Gouveia, Maria Celeste cv logo 2

Data: 2007

Identificador Persistente: http://hdl.handle.net/10316/11297

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Hankel matrices; Toeplitz matrices; Systems of polynomial equations; Sylvester identity


Descrição
The Toeplitz pencil conjecture stated in [SS1] and [SS2] is equivalent to a conjecture for n £ n Hankel pencils of the form Hn(x) = (ci+j¡n+1); where c0 = x is an indeterminate, cl = 0 for l < 0; and cl 2 C¤ = Cn f0g; for l ¸ 1: In this paper it is shown to be implied by another conjecture, we call root conjecture. This latter claims for a certain pair (mnn;mn¡1;n) of submaximal minors of certain special Hn(x) that, viewed as elements of C[x]; there holds that roots(mnn) µ roots(mn¡1;n) implies roots(mn¡1;n) = f1g: We give explicit formulae in the ci for these minors and show the root conjecture for minors mnn;mn¡1;n of degree · 6: This implies the Hankel Pencil conjecture for matrices up to size 8 £ 8: Main tools involved are a partial parametrization of the set of solutions of systems of polynomial equations that are both homogeneous and index sum homogeneous, and use of the Sylvester identity for matrices.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia