Document details

The Hankel Pencil Conjecture

Author(s): Kovačec, Alexander cv logo 1 ; Gouveia, Maria Celeste cv logo 2

Date: 2007

Persistent ID: http://hdl.handle.net/10316/11297

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Hankel matrices; Toeplitz matrices; Systems of polynomial equations; Sylvester identity


Description
The Toeplitz pencil conjecture stated in [SS1] and [SS2] is equivalent to a conjecture for n £ n Hankel pencils of the form Hn(x) = (ci+j¡n+1); where c0 = x is an indeterminate, cl = 0 for l < 0; and cl 2 C¤ = Cn f0g; for l ¸ 1: In this paper it is shown to be implied by another conjecture, we call root conjecture. This latter claims for a certain pair (mnn;mn¡1;n) of submaximal minors of certain special Hn(x) that, viewed as elements of C[x]; there holds that roots(mnn) µ roots(mn¡1;n) implies roots(mn¡1;n) = f1g: We give explicit formulae in the ci for these minors and show the root conjecture for minors mnn;mn¡1;n of degree · 6: This implies the Hankel Pencil conjecture for matrices up to size 8 £ 8: Main tools involved are a partial parametrization of the set of solutions of systems of polynomial equations that are both homogeneous and index sum homogeneous, and use of the Sylvester identity for matrices.
Document Type Preprint
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU