Detalhes do Documento

On the maximum of periodic integer-valued sequences with exponential type tails...

Autor(es): Hall, A. cv logo 1 ; Temido, M. G. cv logo 2

Data: 2007

Identificador Persistente: http://hdl.handle.net/10316/11287

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Integer-valued periodic sequences; Max-semistable laws; Binomial thinning


Descrição
In this work we study the limiting distribution of the maximum term of periodic integer-valued sequences with marginal distribution belonging to a particular class where the tail decays exponentially. This class does not belong to the domain of attraction of any max-stable distribution. Nevertheless, we prove that the limiting distribution is max-semistable when we consider the maximum of the first kn observations, for a suitable sequence kn increasing to infinity. We obtain an expression for calculating the extremal index of sequences satisfying certain local conditions similar to conditions D(m)(un), m ∈ N, defined by Chernick et al. (1991). We apply the results to a class of max-autoregressive sequences and a class of moving average models. The results generalize the ones obtained for the stationary case. FCT; Unidade de Investigação Matemática e Aplicações of University of Aveiro; Center for Mathematics of University of Coimbra
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia