Detalhes do Documento

Finite difference approximations for a fractional advection diffusion problem

Autor(es): Sousa, Ercília cv logo 1

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/11247

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Fractional advection diffusion; Finite differences; Stability


Descrição
The use of the conventional advection diffusion equation in many physical situations has been questioned by many investigators in recent years and alternative diffusion models have been proposed. Fractional space derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model. When a fractional derivative replaces the second derivative in a diffusion or dispersion model, it leads to enhanced diffusion, also called superdiffusion. We consider a one dimensional advection-diffusion model, where the usual second-order derivative gives place to a fractional derivative of order , with 1 < ≤ 2. We derive explicit finite difference schemes which can be seen as generalizations of already existing schemes in the literature for the advection-diffusion equation. We present the order of accuracy of the schemes and in order to show its convergence we prove they are stable under certain conditions. In the end we present a test problem.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia