Detalhes do Documento

A relative theory of universal central extensions

Autor(es): Casas, José Manuel cv logo 1 ; Linden, Tim Van der cv logo 2

Data: 2009

Identificador Persistente: http://hdl.handle.net/10316/11178

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): Categorical Galois theory; Semi-abelian category; Homology; Perfect object; Commutator; Baer invariant; Birkhoff subcategory


Descrição
Basing ourselves on Janelidze and Kelly’s general notion of central extension, we study universal central extensions in the context of semi-abelian categories. Thus we unify classical, recent and new results in one conceptual framework. The theory we develop is relative with respect to a chosen Birkhoff subcategory of the category considered: for instance, we consider groups vs. abelian groups, Lie algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz algebras vs. Lie algebras. We also examine the interplay between the relative case and the “absolute” theory determined by the Birkhoff subcategory of all abelian objects. Ministerio de Educacion y Ciencia under grant number MTM2006-15338-C02-02 (includes European FEDER support), by project Ingenio Mathematica (i-MATH) under grant number CSD2006-00032 (Consolider Ingenio 2010); Xunta de Galicia under grant number PGIDITI06PXIB371128PR; CMUC; FCT
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia