Document details

H1-second order convergent estimates for non Fickian models

Author(s): Barbeiro, S. cv logo 1 ; Ferreira, J. A. cv logo 2 ; Pinto, L. cv logo 3

Date: 2009

Persistent ID: http://hdl.handle.net/10316/11163

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Non Fickian models; Finite difference method; Piecewise linear finite element method; Supraconvergence; Superconvergence


Description
In this paper we study numerical methods for integro-differential initial boundary value problems that arise, naturally, in many applications such as heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. We propose finite difference methods to compute approximations for the continuous solutions of such problems. For those methods we analyze the stability and study the convergence. We prove a supraconvergent estimate. As such methods can be seen as lumped mass methods, our supraconvergent result is a superconvergent result in the context of finite element methods. Numerical results illustrating the theoretical results are included. Centre for Mathematics of University of Coimbra; Project PTDC/Mat/74548/2006; Project UTAustin/MAT/0066/2008
Document Type Preprint
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU